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Markov chains

Let E a finite state space with N elements.

Definition

A sequence of random variables (Xk)k∈N taking values in E is a
Markov chain if for all n ≥ 1 and x1, . . . xn ∈ E :

P(Xn = xn|Xn−1 = xn−1, . . . ,X0 = x0) = P(Xn = xn|Xn−1 = xn−1).

Definition

A Markov chain (Xk)k∈N is said homogeneous if for all i , j ∈ E and
n ≥ 1 :

P(Xn = j |Xn−1 = i) = P(X1 = j |X0 = i).
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Markov chains

In the sequel, (Xk)k∈N is an homogeneous Markov chain taking
values in E = (e1, . . . , eN).

Property

(Xk)k∈N is characterized by :

the row vector π defined for all i by : π(i) = P(X0 = ei ).

the transition matrix M defined for all i , j by :
M(i , j) = P(X1 = j |X0 = i)
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Example

We take the following initial condition :

π =
(A B C

0 0 1
)

and this transition matrix :

M =


A B C

A 1− p p 0
B 0 1− p p
C p 0 1− p

.

7/39 Alexis Huet



Introduction
Likelihood of the observations

Computation of the best hidden sequence
Optimization of the model parameters

Real applications of hidden Markov models

Definitions and example
Issues

Example

8/39 Alexis Huet



Introduction
Likelihood of the observations

Computation of the best hidden sequence
Optimization of the model parameters

Real applications of hidden Markov models

Definitions and example
Issues

Example

We obtain a sequence in the form of :

X0 −−−−→ X1 −−−−→ X2 −−−−→ . . . −−−−→ Xm−1.

For p = 0.4, a length m = 100 and a randomness ω, we get the
following sequence :
C C C A B B B C A B B B B B C C A A A B C C C A A B B C C
C C C A A A A B B B B B C C C C A A A A A A A B C A B B B
B B B B B B B C C A A B C A A B B B C A A B B C C A B B B
B B B C C C A A A A A A B.
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Hidden Markov models

Definition

(Xk ,Yk)k∈0:m−1 is a hidden Markov model if : (Xk)k∈0:m−1 is a
Markov chain, (Yk)k∈0:m−1 are independent conditionally to
(Xk)k∈0:m−1 and for all k , Yk depends only on Xk .

Schematically, we have :

X0 −−−−→ X1 −−−−→ X2 −−−−→ . . . −−−−→ Xm−1y y y y y
Y0 Y1 Y2 . . . Ym−1

.
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Example

For all site k, the transition to Yk conditionally to Xk is given by
the matrix :

N =


0 1

A 1 0
B 1− q q
C 0 1

.
For p = 0.4 and q = 0.7, we get the sequence :

C −−−−→ C −−−−→ C −−−−→ A −−−−→ . . . −−−−→ By y y y y y
1 1 1 0 . . . 1

.
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C C C A B B B C A B B B B B C C A A A B C C C A A B B

1 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1

C C C C C A A A A B B B B B C C C C A A A A A A A B C

1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1

A B B B B B B B B B B C C A A B C A A B B B C A A B B

0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1

C C A B B B B B B C C C A A A A A A B

1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1.
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1 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1

1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1

0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1

1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1.
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Issues

Now, the hidden chain (xk) is unknown and we only have the
observations (yk). We want :

knowing the model, to compute the likelihood of the
observations.

knowing the model, to fit the hidden sequence with the
highest likelihood.

to estimate the parameters of the model.
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Likelihood computation

From now, we assume that we know the observed values y0:m−1.
Moreover, the model is fixed here (initial distribution and transition
matrix).

Aim

Compute p(y0:m−1) likelihood of the observed values.

As the model is fixed, we can calculate, for all x , x ′, y :

p(Yk = y |Xk = x) and p(Xk+1 = x ′|Xk = x)

written in the next slides :

p(y |x) and p(x ′|x).
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Likelihood computation : brute-force

For an hidden sequence x0:m−1, we have :

p(x0:m−1, y0:m−1) = π(x0)
m−1∏
k=0

p(yk |xk)
m−2∏
k=0

p(xk+1|xk).

Thus :

p(y0:m−1) =
∑
x0:m−1

π(x0)
m−1∏
k=0

p(yk |xk)
m−2∏
k=0

p(xk+1|xk).

The sum is on the |E |m elements. Cannot be used when m
increases.
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Likelihood computation : forward decomposition

The Markovian structure is used. To compute, for all
k ∈ 0 : m − 1, i ∈ E :

αk(i) = p(Y0:k = y0:k ,Xk = i).

We write :

αk+1(j) =p(Y0:k+1 = y0:k+1,Xk+1 = j)

=p(yk+1|y0:k ,Xk+1 = j)p(y0:k ,Xk+1 = j)

=p(yk+1|Xk+1 = j)
∑
i

p(y0:k ,Xk = i ,Xk+1 = j)

=p(yk+1|Xk+1 = j)
∑
i

p(Xk+1 = j |y0:k ,Xk = i)P(y0:k ,Xk = i)

=p(yk+1|Xk+1 = j)
∑
i

p(Xk+1 = j |Xk = i)αk(i).
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Likelihood computation : forward decomposition

With :
αk(i) = p(Y0:k = y0:k ,Xk = i).

Initialization : α0(i) = π(i)p(y0|X0 = i).

Induction :
αk+1(j) = p(yk+1|Xk+1 = j)

∑
i p(Xk+1 = j |Xk = i)αk(i).

Likelihood computation :

p(y0:m−1) =
∑
i

αm−1(i).

Complexity : |E |2m, linear with the length of the sequence.
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Example

With the previous example, with p = 0.4, q = 0.7 and the observed
sequence 1 1 1 0 1 0 0 1 0 ... 0 0 0 0 0 1, we get :
For j ∈ {A,B,C},

α0(j) = π(j)p(y0|X0 = j) = 1j=C .

α1(j) = p(y1|X1 = j)
∑
i

p(X1 = j |X0 = i)α0(i)

= p(1|X1 = j)p(X1 = j |X0 = C )

= (1− p)1j=C

= 0.6× 1j=C .

etc.
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Example

Sequence : 1 1 1 0 1 0 0 1 0 ... 0 0 0 0 0 1

α0 =
(A B C

0 0 1
)
, α1 = (0, 0, 0.6), α2 = (0, 0, 0.36),

α3 = (0.144, 0, 0),

α4 = (0, 0.04, 0), α5 = (0, 0.007, 0), α6 = (0, 0.001, 0),

α7 = (0, 5.49e−04, 5.23e−04), α8 = (2.09e−04, 9.88e−05, 0), . . . ,

αm−1 = (0, 1.00e − 30, 2.86e − 31).

Thus p(y0:m−1|p = 0.4, q = 0.7) = 1.29e − 30.
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Introducing the problem

We still have the observed values y0:m−1, the model is fixed. The
aim is to seek the best sequence x0:m−1 in the following sense,
knowing the observed values.

Aim

Compute arg maxx0:m−1 p(x0:m−1, y0:m−1).

To do that, we use the Viterbi algorithm.
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Idea of the algorithm

Out aim is to compute
(x∗0 , . . . , x

∗
m−1) = arg maxx0:m−1 p(x0:m−1, y0:m−1).

We assume that we have x∗k+1, . . . , x
∗
m−1. Then :

(x∗0 , . . ., x
∗
k ) = arg max

x0:k

p(x0:k , x
∗
k+1:m−1, y0:m−1)

= arg max
x0:k

p(x0:k , y0:k)p(x∗k+1|xk)p(x∗k+2:m−1, yk+1:m−1|x∗k+1)

= arg max
x0:k

p(x0:k , y0:k)p(x∗k+1|xk).

Thus : x∗k = arg max
xk

max
x0:k−1

[p(x0:k , y0:k)]︸ ︷︷ ︸
δk (xk )

p(x∗k+1|xk)

︸ ︷︷ ︸
ψk+1(x∗k+1)

.
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Viterbi algorithm

For all site k, for all hidden state i ∈ E , we let :

δk(i) = max
x0:k−1

p(y0:k , x0:k−1,Xk = i).

We check for j ∈ E (same method as the forward process) :

δk+1(j) = p(yk+1|Xk+1 = j) max
i

[δk(i)p(Xk+1 = j |Xk = i)].

Finally :
Initialization : δ0(i) = π(i)p(y0|X0 = i).

Induction : δk+1(j) according to the above formula.

Return initialization : x∗m−1 = arg maxxm−1 δm−1(xm−1).

Return : x∗k = ψk+1(x∗k+1) with :

ψk+1(j) = arg max
xk

δk(xk)p(Xk+1 = j |xk).
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Example

C C C A B B B C A B B B B B C C A A A B C C C A A B B

C C C A B B B C A A B C A A B C A A A B C C C A A B C

1 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1

C C C C C A A A A B B B B B C C C C A A A A A A A B C

C C C C C A A A A A A A B C C C C C A A A A A A A B C

1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1

A B B B B B B B B B B C C A A B C A A B B B C A A B B

A A A A B B C A B B B C C A A B C A A B B B C A A A B

0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1

C C A B B B B B B C C C A A A A A A B

C C A A B B C A A B C C A A A A A A B

1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1.
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Introducing the problem

We know the observed values y0:m−1. The model now depends on
parameters θ ∈ Θ.

Aim

Compute arg maxθ p(y0:m−1|θ) most probable parameters of the
model.

Two methods are set out here :

Use the first part of this talk and compute p(y0:m−1|θ) for all
parameters.

Use the second part and recursively update the parameters,
depending of the best hidden sequence found.
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Example

We take again the sequence :
1 1 1 0 1 0 0 1 0 0 1 1 0 0 ... 0 0 0 0 0 1.

We seek a parameter θ = (p, q) ∈ [0, 1]× [0, 1]. We calculate
log p(y0:m−1|p, q) with a step of 0.01, and then take the maximum.

31/39 Alexis Huet



Introduction
Likelihood of the observations

Computation of the best hidden sequence
Optimization of the model parameters

Real applications of hidden Markov models

Introducing the problem
Brute-force
Hard Expectation-Maximization algorithm

32/39 Alexis Huet



Introduction
Likelihood of the observations

Computation of the best hidden sequence
Optimization of the model parameters

Real applications of hidden Markov models

Introducing the problem
Brute-force
Hard Expectation-Maximization algorithm

Hard Expectation-Maximization algorithm

The observed values y = y0:m−1 are known. We let θ0 ∈ Θ some
initial parameters.
For i ≥ 0 :

Compute xi with the Viterbi algorithm, for y and θi .

Maximize the couple (xi , y) over the set of the parameters :

θi+1 = arg max
θ

p(xi , y |θ).

The estimation of the parameters is the last θi computed.
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Phylogenetic analysis

Observations : DNA sequences of several species at the leafs
of a tree graph.

Hidden states : all DNA sequences from the common ancestry
sequence to the present time.

Parameters : mutation parameters, lengths of the tree
branches.
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Voice recognition system

Observations : a word is pronounced, cut every 15ms.

Hidden states : phonemes that led to this pronounced word.

Parameters : the set of all dictionary words.
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Path tracking

Observations : noisy position.

Hidden states : real position.

Parameters : behavior of the moving body.

38/39 Alexis Huet



Introduction
Likelihood of the observations

Computation of the best hidden sequence
Optimization of the model parameters

Real applications of hidden Markov models

Thank you for your attention !
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