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Abstract— In this paper we examine the single sensor, bearings-
only target tracking problem. This problem is known to be
difficult due to the potential unobservability of elements of the
target’s state and the high degree of nonlinearity in the measure-
ment process. We compare the performance of three different
tracking algorithms. The algorithms are of varying degrees of
computational complexity. The results of these comparisons can
be used to gain insight into the degree of difficulty caused by
each of these two issues. The understanding this provides can
aid in the selection of an appropriate target tracking filter for a
given application.
Keywords: bearings-only tracking, nonlinear filtering, log
polar coordinates

I. I NTRODUCTION

The bearings-only tracking problem is a common one in
radar and sonar environments. However, it is known to be
a difficult problem, particularly when there is only a single
sensor. There are two main issues which contribute to making
this a hard problem. The first is the high degree of nonlinearity
of the measurement process [1]. The second is that the target
state is not fully observable unless the sensor platform “out
manoeuvres” the target [2]. If this does not happen, the sensor
does not have sufficient information to estimate the range to
the target.

One of the more common methods for dealing with a
nonlinear model is to use the extended Kalman filter (EKF)
[3]. However, this is known to lack robustness and can diverge
if the degree of nonlinearity of the system is high or if the filter
is poorly initialised. More sophisticated approaches include the
unscented Kalman filter (UKF) [4] and the particle filter [5]. A
particle filter based tracker for the bearing-only problem was
compared with other common approaches in [6].

All of the approaches mentioned use a single filter to
estimate the target’s state. An alternative method is to model
the nonlinearity by a sum of Gaussians [7]. The Gaussian
sum approximation approach has been used for the single
sensor bearings-only problem to construct a multihypothesis
Kalman filter [8]; a range-parameterised EKF tracker [9]; and
a Gaussian sum measurement presentation [10].

† This paper had originally been accepted for presentation at Radar-
Con 2008 but had to be withdrawn due to circumstances beyond the authors’
control.

A common tactic for dealing with the possibile unobserv-
ability of the target’s range is to use the modified polar coordi-
nate (MPC) basis of [11]. In this coordinate basis, the target’s
dynamical model is nonlinear but the measurement model
is linear. More importantly, the unobservable and observable
components of the target’s state vector are decoupled. Use of
this coordinate basis improves the stability and robustness of
an EKF-based tracking filter. Recently, a variant of the MPC
system was proposed in [12] called the log polar coordinate
(LPC) basis. As pointed out in [12] an advantage of LPC over
MPC is that it is possible to derive a closed-form expression
for the Craḿer-Rao lower bound. In addition, preliminary
results suggest that a further advantage of LPC is that an EKF
using LPC is more robust than one that makes use of MPC
[1].

In this paper, we examine the effects ofnonlinearity and
unobservabilityon the degree of difficulty of the single-sensor
bearings-only tracking problem. We do this by comparing
three filtering algorithms for this problem. These are

1) a Gaussian sum measurement approximation filter;
2) an extended Kalman filter using LPC; and
3) a range-parameterised EKF using LPC.

The first filter focuses on dealing with the issues arising
from the nonlinearities in the problem, while the second
concentrates on the unobservability issue. The third filter seeks
to address both problems. By comparing the performance of
these three trackers we can determine the contribution of each
issue to the overall difficulty of this problem. This can then
provide guidelines to determining where to focus resources
such as computational effort in applications where resources
are constrained.

The next section defines the single-sensor bearings-only
tracking problem mathematically. Sections III–V describe the
three tracking algorithms. In Section VI the problem of
initialising these filters is discussed. This is an important point
as poor initialisation generally leads to track loss, even for the
most robust filter. Finally, in Section VII the algorithms are
compared using a simple simulation scenario.
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II. SINGLE-SENSORBEARINGS-ONLY TRACKING

PROBLEM

In this paper, we consider only 2D tracking problems and
we define thex coordinate to be East and they coordinate as
North. The bearing,β, is measured clockwise from North. We
use boldface to indicate vectors with scalars in normal font.

The position of the target in 2D is given by(xt, yt), and its
speed and acceleration given by(ẋt, ẏt) and (ẍt, ÿt) respec-
tively, where the superscriptt is used to indicate these are
target state variables. The corresponding values for the sensor
platform, or observer, are (xo, yo), (ẋo, ẏo) and (ẍo, ÿo), as
indicated by the superscripto. Assuming constant velocity
motion [2] for the target, the relative target state vector at
time tk is

xk
4
=

[
(xt

k − xo
k) (yt

k − yo
k) (ẋt

k − ẋo
k) (ẏt

k − ẏo
k)

]′
(1)

and the sensor measurement is

zk = βk + vk (2)

wherevk ∼ N (0, σ2
β) and

βk = arctan
(

xk

yk

)
(3)

The target state dynamical equation in Cartesian coordinates
is

xk = Akxk−1 + wk−1 (4)

where

Ak
4
=


1 0 Tk 0
0 1 0 Tk

0 0 1 0
0 0 0 1

 (5)

andTk = tk− tk−1 and the elements of the perturbation term,
wk−1, are given by

w1 =
∫ tk

tk−1

(tk − u)(ẍt
u − ẍo

u)du (6)

w2 =
∫ tk

tk−1

(tk − u)(ÿt
u − ÿo

u)du (7)

w3 =
∫ tk

tk−1

(ẍt
u − ẍo

u)du (8)

w4 =
∫ tk

tk−1

(ÿt
u − ÿo

u)du (9)

(10)

wherewi is the i-th element of the vectorw.

III. G AUSSIAN SUM MEASUREMENTAPPROXIMATION

FILTER

When tracking using bearings-only or range and bearing
measurements, the uncertainty region in Cartesian coordinates
is wedge shaped [8], [9]. Approximating this uncertainty
region with a single Gaussian can lead to poor performance.
The tracking algorithm described in this section is based on

those in [13] and [10]. In these works, the measurement is
approximated by a sum of Gaussians as first proposed in [7]. In
contrast to the range-parameterised approach first described by
Peach [9], only a single equation is used for the state dynamics.
Instead, only the measurement equation that is approximated
by a sum of Gaussians. These give rise to a weighted sum of
possible innovations, which are combined to produce a single
state estimate. Figure 1 shows the measurement uncertainty
region in Cartesian coordinates given a bearing measurement
of 50◦ with an measurement standard deviation ofσβ = 1◦.
All that is known about the true target range is that it lies in the
interval [2, 20] km. This region is approximated usingNG =
10 Gaussians using the method described below. Figure 2
shows the accuracy of the sum of Gaussians approximation
to the uniform uncertainty in the range measurement.

Fig. 1. Measurement uncertainty region in Cartesian coordinates approxi-
mated by 10 Gaussians.

Fig. 2. Accuracy of the sum of Gaussians approximation to uniform
uncertainty in range.

More precisely, the Gaussian sum measurement approxi-
mation bearings-only tracking algorithm operates as follows.
The target state is given in Cartesian coordinates. At the start
of scan k, the input to the algorithm is the filtered state
estimate,̂xk−1|k−1 and its associated error covariance matrix,
Pk−1|k−1 from the previous iteration. Theprediction step
is then the standard Kalman filter prediction step using the
dynamic equation (4).
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Then, assuming the true target state lies in the interval[
(x̂− 3C

√
P(1, 1), x̂ + 3C

√
P(1, 1))

(ŷ − 3C
√

P(2, 2), ŷ + 3C
√

P(2, 2))

]
(11)

where P(i, j) is the (i, j)-th element of the matrixP and
C is a user-specified parameter, compute the minimum and
maximum range to the target,(rmin, rmax). This interval is
then divided intoNG Gaussians using the method in [8], [9].
That is, let the centre,ri

c, and length,ri
d, of the i-th interval

be given by
ri
d

ri
c

= c (12)

where

c =
2(η − 1)
η + 1

, η =
(

rmax

rmin

) 1
NG

(13)

This non-uniform division of the range interval insures the
coefficient of variation is the same in each interval. This is
believe to assist in the tracking performance [9]. For each
range subinterval, define the weighting probabilities as

γi
k =

ri
d∑
i ri

d

(14)

For each range subinterval, compute a pseudo-measurement
in Cartesian coordinates using the centre of the interval as
the range estimate and the unbiased converted measurement
method of [14]. That is, assuming the true measurement noise
is Gaussian, the pseudo-measurement is

zi
k
4
=

[
λ−1

β ri
c sin zk λ−1

β ri
c cos zk

]′
(15)

whereλβ = exp(−0.5σ2
β) and σβ is the measurement noise

standard deviation. The corresponding measurement noise
matrix for thei-interval,Ri, is given by the equations

Ri(1, 1) = (λ−2
β − 2)(ri

c)
2 sin2 zk

+ 1
2 ((ri

c)
2 + σ2

r)(1− λ4
β cos 2zk) (16)

Ri(2, 2) = (λ−2
β − 2)(ri

c)
2 cos2 zk

+ 1
2 ((ri

c)
2 + σ2

r)(1 + λ4
β cos 2zk) (17)

Ri(1, 2) = (λ−2
β − 2)(ri

c)
2 cos zk sin zk

+ 1
2 ((ri

c)
2 + σ2

r)λ4
β sin 2zk (18)

where σr = ri
d

6 . Then, using each pseudo-measurement, do
a standard Kalman filter update step to produce a filtered
state estimate,̂xi

k|k, and its associated error covariance matrix,
Pi

k|k, for each subinterval. Finally, compute the weighted
average of the estimate from each subinterval, i.e.

x̂k|k =
NG∑
i=1

γi
kx̂

i
k|k (19)

Pk|k =
NG∑
i=1

γi
k

{
Pi

k|k + (x̂i
k|k − x̂k|k)(x̂i

k|k − x̂k|k)′
}

(20)

Note, it is not necessary to combine all the Gaussians into
a single Gaussian approximation at the end of each scan.

More sophisticated approaches are possible. However, they
lead to an exponentially increasing number of Gaussians with
each scan, unless mixture reduction algorithms such as those
described in [15] are used.

IV. LPC-EKF TRACKER

The equations for the extended Kalman filter are well known
and can be found in references such [3]. For reasons of space,
they are not repeated here. The relative state vector in LPC is
given by

yk
4
=

[
β̇k ρ̇k βk ρk

]′
(21)

where

rk
4
=

√
x2

k + y2
k (22)

ρk
4
= ln(rk) (23)

ṙk
4
=

xkẋk + ykẏk

rk
(24)

β̇k
4
=

ẋkyk − xkẏk

r2
k

(25)

and henceρ̇k = ṙk

rk
. As with MPC, the first three elements

of the LPC state are always observable. The final element is
unobservable unless the observer manoeuvres appropriately.
However, unlike MPC, this coordinate basis ensures that the
estimated range is always positive.

It is straightforward to show that the conversions between
Cartesian and LPC and vice versa are given by (dropping the
time index for clarity)

x = exp(y4)


sin y3

cos y3

y2 sin y3 + y1 cos y3

y2 cos y3 − y1 sin y3

 (26)

and

y =


x2x3−x1x4

x2
1+x2

2
x1x3+x2x4

x2
1+x2

2

arctan
(

x1
x2

)
1
2 ln

(
x2

1 + x2
2

)
 (27)

Using an approach similar to that of [11] it can be shown that
the target dynamics in LPC are given by

y1(tk) =
S1S4 − S2S3

S2
3 + S2

4

(28)

y2(tk) =
S1S3 + S2S4

S2
3 + S2

4

(29)

y3(tk) = y3(tk−1) + arctan
(

S3

S4

)
(30)

y4(tk) = y4(tk−1) + 1
2 ln

(
S2

3 + S2
4

)
(31)

where

S1 = y1 + exp(−y4) [w3 cos(y3)− w4 sin(y3)] (32)

S2 = y2 + exp(−y4) [w3 sin(y3) + w4 cos(y3)] (33)

S3 = Ty1 + exp(−y4) [w1 cos(y3)− w2 sin(y3)] (34)

S4 = 1 + Ty2 + exp(−y4) [w1 sin(y3) + w2 cos(y3)] (35)
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and the values on the right-hand side of (32)–(35) are elements
of yk−1 and wk−1. Given (28)–(31) it is straightforward, if
tedious, to compute the Jacobian matrix for the EKF prediction
step. The interested reader is referred to [1] for details.

V. RANGE-PARAMETERISED LPC-EKF

This filter, hereafter called the RP-LPC-EKF, is based on the
range-parameterised EKF of Peach [9]. This filter is initialised
with an user-specified minimum and maximum range to the
target, rmin and rmax. This range interval is then divided
into NG subinterval using the method described in Section III.
Then, an EKF is initialised for each range subinterval using
the method described in Section VI.

For each individual subinterval, the target state is estimated
using the extended Kalman filter algorithm. Assuming the
measurement noise is Gaussian, the marginal measurement
likelihood from each EKF,pi

z = p(zk|i), can be easily
computed. The weights are then updated using

γi
k =

pi
zγ

i
k−1∑NG

i=1 pi
zγ

i
k−1

(36)

For output only, the average state estimate in LPC and its
associated error covariance is given by

ŷk|k =
NG∑
i=1

γi
kŷ

i
k|k (37)

Pk|k =
NG∑
i=1

γi
k

{
Pi

k|k + (ŷi
k|k − ŷk|k)(ŷi

k|k − ŷk|k)′
}

(38)

whereŷi
k|k andPi

k|k are the estimated state and its associated
error covariance from thei-th filter. Note, in contrast to the
Gaussian sum measurement approximation filter, an individual
filter is maintained for each range subinterval.

VI. I NITIALISATION

Accurate initialisation is crucial to obtaining effective track-
ing performance for the single sensor bearings-only problem.
The method used in this paper is the one described in Section
6.4.1 of [5]. A more sophisticated method was first trialled,
making using of the unbiased conversion of [14] but this
proved to be less robust than the method described here. This is
probably due to the relatively low measurement noise used in
the scenario considered here. In such cases, the bias conversion
factor,λβ , is close to unity and the resulting error covariance
matrix is ill-conditioned.

Each filter is initialised using the first bearing measurement
z1 and the known measurement noise standard deviationσβ .
An initial range estimatēr and associated range measurement
standard deviationσr are then used to compute an initial
estimate of the target position. That is, the position elements
of x̂1|1 are given by

x̂(1) = r̄ sin z1 (39)

x̂(2) = r̄ cos z1 (40)

The corresponding error covariance terms are

P(1, 1) = σ2
r sin2 z1 + r̄2σ2

β cos2 z1 (41)

P(2, 2) = σ2
r cos2 z1 + r̄2σ2

β sin2 z1 (42)

P(1, 2) = (σ2
r − r̄2σ2

β) sin z1 cos z1 (43)

For the Gaussian sum measurement approximation filter and
the RP-LPC-EKF the values of̄r and σr are given by the
mean and length of each range subinterval as described in
Section III. For the LPC-EKF these values are user-specified
parameters.

To set the velocity components we require estimates of
the initial heading and speed of the target. The initial course
of the target is estimated as̄c = z1 + π. The minimum
and maximum speed of the target,smin and smax, are user-
specified parameters. The speed interval is divided using the
same method as for the range interval, with the lower speed
intervals associated with the closer range intervals as in [5],
i.e. thei-th filter is initialised with mean values for the range
and speed of(ri

c, s
i
c).

The uncertainty in the target’s course is assumed to be
uniform in the range[−π

2 , π
2 ], thus it has a standard deviation

of σc = π√
12

. With these assumptions, the velocity components
of the state vector are then initialised using

x̂(3) = s̄ sin c̄− ẋo
1 (44)

x̂(4) = s̄ cos c̄− ẏo
1 (45)

The velocity covariance terms are given by

P(3, 3) = σ2
s sin2 c̄ + s̄2σ2

c cos2 c̄ (46)

P(4, 4) = σ2
s cos2 c̄ + s̄2σ2

c sin2 c̄ (47)

P(3, 4) = (σ2
s − s̄2σ2

c ) sin c̄ cos c̄ (48)

For the Gaussian sum measurement approximation filter and
the RP-LPC-EKF the values of̄s and σs are given by the
mean and length of each speed subinterval as described in
Section III. For the LPC-EKF these values are user-specified
parameters.

Given the initial estimate and its associated error covariance
in Cartesian coordinates, the LPC-based filters are initialised
by noting that we can write (27) asy = f(x). Then, using a
first-order approximation, the initial estimate in LPC is

ŷ1|1 = f(x̂1|1) (49)

and its associated error covariance is given by

PLPC
1|1 = FP1|1F′ (50)

whereF is

F =
∂f
∂x

∣∣∣∣
x̂1|1

(51)

VII. S IMULATIONS

The three tracking algorithms where compared using 1000
Monte Carlo simulations of a simple tracking scenario. This
scenario is based on the one used in Section 6.5.1 in [5] for
a non-manoeuvring target. Both the observer and the target
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are submarines, with the observer initially at the origin of the
coordinate frame. The initial range and bearing to the target are
5km and80◦ respectively. The observer’s trajectory has three
distinct segments – constant velocity motion for 13 minutes;
a coordinated turn through120◦ for 4 minutes; followed by
constant velocity motion for a further 13 minutes. The observer
moves with a constant speed of 5 knots while the target’s speed
is 4 knots. The target follows constant velocity motion with a
heading of−140◦. The bearing measurement noise standard
deviation was1◦ and the sampling interval was 1 minute.

The range and speed parameters used for initialisation
are shown in Table I. For the range-parameterised EKF and
the Gaussian sum measurement filter the range interval was
divided into NG = 5 subintervals. The covariance scaling
factor, for the Gaussian sum measurement filter was set to
C = 10. For the LPC-EKF filter, the range and speed standard
deviations were set toσr = 2 km andσs = 2 kts respectively.
Even though the true target dynamics were deterministic,
a minor amount of process noise was added to the LPC-
based filters. This ensured that the gain in the filter remained
sufficiently high.

TABLE I

RANGE AND SPEED INITIALISATION PARAMETERS

Minimum Maximum Mean
Range rmin = 1km rmax = 25km r̄ = 13km
Speed smin = 2kts smax = 15kts s̄ = 8.5kts

Once again, following the approach in [5], we evaluated the
performance of the tracking algorithms using the following
three metrics

1) root-mean square (RMS) position error at the final
sampling time;

2) root time-averaged mean square (RTAMS) error; and
3) the number of divergent tracks.

Using the metrics of [5], a track was deemed to havediverged
if the estimated position error at any time was greater than
20km. The RMS and RTAMS metrics were only computed
for non-divergent tracks. The RMS metric at scank is given
by

RMSk =

√√√√ 1
M

M∑
i=1

(x̂i
k + xo

k − xt
k)2 + (ŷi

k + yo
k − yt

k)2

(52)
where M is the number of Monte Carlo simulations. The
RTAMS metric is given by

RTAMS = (53)√√√√ 1
M(kN − kt)

M∑
i=1

kN∑
k=kt+1

(x̂i
k + xo

k − xt
k)2 + (ŷi

k + yo
k − yt

k)2

wherekN is the index of the final scan andkt is the scan at
which the observer completed its turn. The target trajectory is
only completely observable once the observer has commenced
a manoeuvre, so the RTAMS metric is a measure of how

quickly each tracker can refine its track estimates once it has
full information on the target.

TABLE II

TRACKER PERFORMANCEMETRICS

Algorithm Final RMS RTAMS Divergent
km km Tracks

Gaussian Sum 0.32 1.43 0
LPC-EKF 0.24 0.29 0
RP-LPC-EKF 0.26 0.22 1

From the results in Table II we see that all three filters pro-
vide similar tracking accuracy by the final scan. The significant
differences between the filters are in the speed with which
they are able to make use of the range information provided
once the observer begins to manoeuvre. The Gaussian sum
approximation filter suffers from a relatively slow convergence
rate, while the two LPC-based filters show similar behaviour.

The similarity in performance between the LPC-EKF and its
range-parameterised equivalent is in contrast to the results of
Peach [9]. This may be due, in part, to the particular geometry
of this scenario. In [9], the most significant differences be-
tween the MPC-EKF and the range-parameterised MPC-EKF
occurred when the relative range was small (< 2 km) or large
(> 20 km). Another cause is suggested by the results of [1].
These results suggest that by using LPC in place of MPC, the
degree of nonlinearity of the problem is reduced, increasing
the robustness of an EKF-based filter.

Figures 3–5 show the tracker output from each of the
three filters from a single Monte Carlo run. These figures
clearly illustrate the relative differences between the filters in
respect of accurate performance at the final scan and accurate
performance after the observer’s manoeuvre.

Using the simplest algorithm, LPC-EKF, as a baseline the
runtimes of the other two algorithms were approximately 5
times as long for the Gaussian sum measurement approxi-
mation filter and 7 times as long for the range-parameterised
LPC-EKF algorithm.

Fig. 3. Tracker output from a single run of the Gaussian sum measurement
approximation filter.
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Fig. 4. Tracker output from a single run of the LPC-EKF filter.

Fig. 5. Tracker output from a single run of the range-parameterised LPC-EKF
filter.

VIII. C ONCLUSIONS

The results of this paper suggest that the key issue in making
the single sensor bearings-only tracking problem difficult is
the lack of full observability of the target state. By selecting
a coordinate basis, such as MPC or LPC, the effect of
this issue is greatly ameliorated. It is then possible to use
a relatively unsophisticated nonlinear filter and still obtain
adequate performance.
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