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Abstract— In this paper we examine the single sensor, bearings- A common tactic for dealing with the possibile unobserv-
only target tracking problem. This problem is known to be ability of the target’s range is to use the modified polar coordi-
difficult due to the potential unobservability of elements of the  hata (MPC) basis of [11]. In this coordinate basis, the target's
targets state an\(,jvthe high deg;]ee of ?On“neamyfm rt]he mg-?fsure' dynamical model is nonlinear but the measure’ment model
ment process. We compare the performance of three different -’ )
tracking a|gorithms_ The a|gorithms are of Varying degrees of is linear. More |mp0rtant|y, the unobservable and observable
computational complexity. The results of these comparisons can components of the target's state vector are decoupled. Use of
be used to gain insight into the degree of difficulty caused by this coordinate basis improves the stability and robustness of
each of these two issues. The understanding this provides canyy EKF-pased tracking filter. Recently, a variant of the MPC
aid in the selection of an appropriate target tracking filter for a system was proposed in [12] called the log polar coordinate
given application. Y ’ prop X ) gp
Keywords: bearings-only tracking, nonlinear filtering, log ~(LPC) basis. As pointed out in [12] an advantage of LPC over
polar coordinates MPC is that it is possible to derive a closed-form expression

for the Crangr-Rao lower bound. In addition, preliminary
|. INTRODUCTION results suggest that a further advantage of LPC is that an EKF

The bearings-only tracking problem is a common one imsing LPC is more robust than one that makes use of MPC
radar and sonar environments. However, it is known to Bpg].

a difficult problem, particularly when there is only a single

Sensor. There are two ma_in i§sues V\./hiCh contribute to. mak!ﬂﬂobservabilitwn the degree of difficulty of the single-sensor
this a hard problem. The first is the high degree of nonlineari arings-only tracking problem. We do this by comparing

of the measurement process [1]. The second is that the target, filtering algorithms for this problem. These are
state is not fully observable unless the sensor platform “out

manoeuvres” the target [2]. If this does not happen, the senso
does not have sufficient information to estimate the range to
the target.

One of the more common methods for dealing with a
nonlinear model is to use the extended Kalman filter (EKI%:

In this paper, we examine the effects mdnlinearity and

FL) a Gaussian sum measurement approximation filter;
2) an extended Kalman filter using LPC; and
3) a range-parameterised EKF using LPC.

[3]. However, this is known to lack robustness and can diver Qe first filter focuses on dealing with the issues arising

if the degree of nonlinearity of the system is high or if the filte om the nonlinearities in the problem, while the second

is poorly initialised. More sophisticated approaches include tﬁgncentrates on the unobservability issue. The third filter seeks

unscented Kalman filter (UKF) [4] and the particle filter [5]. Al address both problems. By comparing the performance of

particle filter based tracker for the bearing-only problem Wé@ese three trackers we can determlne the contrlt_)uuon of each
compared with other common approaches in [6]. Issue to the overall difficulty of this problem. This can then

All of the approaches mentioned use a single filter {grovide guidelines to determining where to focus resources
estimate the target’s state. An alternative method is to mo ch as computational effort in applications where resources

the nonlinearity by a sum of Gaussians [7]. The Gaussidh® constrained.

sum approximation approach has been used for the singléfhe next section defines the single-sensor bearings-only
sensor bearings-only problem to construct a multihypothesiacking problem mathematically. Sections IlI-V describe the
Kalman filter [8]; a range-parameterised EKF tracker [9]; anthree tracking algorithms. In Section VI the problem of

a Gaussian sum measurement presentation [10]. initialising these filters is discussed. This is an important point

. . , as poor initialisation generally leads to track loss, even for the
t This paper had originally been accepted for presentation at Radar-

Con 2008 but had to be withdrawn due to circumstances beyond the authSROSt robust f'lter' F'_na"y1 ”?] SeCl:IOH Vil the_ algorithms are
control. compared using a simple simulation scenario.
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Il. SINGLE-SENSORBEARINGS-ONLY TRACKING those in [13] and [10]. In these works, the measurement is
PROBLEM approximated by a sum of Gaussians as first proposed in [7]. In

In this paper, we consider only 2D tracking problems arfePntrast to the ran.ge—parameyeris.ed approach first describeq by
we define ther coordinate to be East and thecoordinate as Peach [9], only a single equation is use'd for thelstate dyngmlcs.
North. The bearing3, is measured clockwise from North. we!nstéad, only the measurement equation that is approximated
use boldface to indicate vectors with scalars in normal font?y & Sum of Gaussians. These give rise to a weighted sum of

The position of the target in 2D is given liy!, y*), and its possible mnovanqns, which are combined to produce a smgle
speed and acceleration given bif, 3*) and (i, §j') respec- state estimate. I_:|gure 1 _shows the measurement uncertainty
tively, where the superscript is used to indicate these arg®dion in Cartesian coordinates given a bearing measurement

target state variables. The corresponding values for the serf¥op0° With an measurement standard deviationogf= 1°.

platform, orobserver are (z°,y°), (i°,9°) and (9, §j°), as All that is known about the true target range is that it lies in the
i) b 1 ) b ’ . . . . . .

indicated by the superscript. Assuming constant velocity INterval [2,20] km. This region is approximated using; =

motion [2] for the target, the relative target state vector af Gaussians using the method described below. Figure 2
shows the accuracy of the sum of Gaussians approximation

time ¢, is . . .
A to the uniform uncertainty in the range measurement.
. . . . /
xp=[ (@ —20) (Wh—wp) G- - ]
Q) 1
and the sensor measurement is
2k = Br + vk (2 o
wherev;, ~ N'(0,03) and .
E
T 7 s
O = arctan <k> 3)
Yk 4
The target state dynamical equation in Cartesian coordinates .
is
X = Aerk—l —+ W1 (4) 0 2 3 s x(ém) 10 12 12 16
where
1 0 T O Fig. 1. Measurement uncertainty region in Cartesian coordinates approxi-
mated by 10 Gaussians.
0 0 1 0
0 0 O 1
andT}y = t; —tr_1 and the elements of the perturbation term, - -
wi_1, are given by e e =
tk 0'05‘: .
wi= [ (- 0@, - ) (6) s
th_1 7
tk %0.03 ¥
wa= [ (- u)ldl - i) 7) !
te—1 o0.02
tr
wa= [ (- )du (®)
tp—1
tk 2 1; é é WIﬂ 12 1‘4 1‘5 18 20
A A ©)
th—1

(10) Fig. 2. Accuracy of the sum of Gaussians approximation to uniform
uncertainty in range.

wherew; is thei-th element of the vectow.
More precisely, the Gaussian sum measurement approxi-
. GAUSSIAN SUM MEASUREMENTAPPROXIMATION  mation bearings-only tracking algorithm operates as follows.
FILTER The target state is given in Cartesian coordinates. At the start
When tracking using bearings-only or range and bearig scan k, the input to the algorithm is the filtered state
measurements, the uncertainty region in Cartesian coordinaesmatex;_;—; and its associated error covariance matrix,
is wedge shaped [8], [9]. Approximating this uncertaint¥,_,;,—; from the previous iteration. Therediction step
region with a single Gaussian can lead to poor performanég.then the standard Kalman filter prediction step using the
The tracking algorithm described in this section is based olynamic equation (4).
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Then, assuming the true target state lies in the interval More sophisticated approaches are possible. However, they

R . lead to an exponentially increasing number of Gaussians with
(af —3CVP(, 1)’Jf +3CVP( 1) (11) each scan, unless mixture reduction algorithms such as those
(4 = 3CVP(2,2),9+3C/P(2,2)) described in [15] are used.
where P (i, j) is the (i,j)-th element of the matri® and IV. LPC-EKF TRACKER

C is a user-specified parameter, compute the minimum an . i
P b P dThe equations for the extended Kalman filter are well known

maximum range to the targefr, iy, 7maqz ). This interval is .
hendhidd o Gaussians Usin e metho n 5,07 51 0 0060 1 it suh ) For reasns of sce
That is, let the centre;’, and lengths, of the i-th interval y P '

be given by ' given by A ,
il . (12) ye=1[0Bc pr Be o) (21)
Te where
where o re 2 /xi 1y 22)
c—= 2(77 - 1) n = (Tmax Na (13) A
n+ 1’ Tmin Pr = ln(rk) (23)
This non-uniform division of the range interval insures the Fy 2 TkTk + Yrr (24)
coefficient of variation is the same in each interval. This is S TE
believe to assist in the tracking performance [9]. For each 3 & TkYk — TkYk (25)
. . L L k= D)
range subinterval, define the weighting probabilities as T
4 and hencep, = . As with MPC, the first three elements

(14 of the LPC state are always observable. The final element is

%
e == 4
2iTa
unobservable unless the observer manoeuvres appropriately.

For each range subinterval, compute a pseudo-measuremeiiever, unlike MPC, this coordinate basis ensures that the
in Cartesian coordinates using the centre of the interval @§tlmated range is always positive.

the range estimate and the unbiased converted measuremeftis sirajghtforward to show that the conversions between
method of [14]. That is, assuming the true measurement NoE§ytesian and LPC and vice versa are given by (dropping the

is Gaussian, the pseudo-measurement is time index for clarity)
7l 2 [ Aglrisinz,  Ag'ricosz }/ (15) sin ys
COS Y3
— 2 i H =
where \; = exp(—0.503) and o is the measurement noise X =exp(Ua) | Ginys + g1 cosys (26)
standard deviation. The corresponding measurement noise Yo COS Y3 — Y1 SiN Y3
matrix for thes-interval, R, is given by the equations q '
an
R(1,1) = ()\ 2 2)(r!)%sin? 2, 7122“;%1%14
1T3+T2T4
((r )(1 — )\ cos 2zy,) (16) y = 2343 @7)
arctan

(r

0+

Ri(2» 2) ( 2)(7“ COS 2k : 2 )

( (ri)* + o2)(1 4 Xj cos 2z;) (17) Lin (23 + 23)
)
o7+

Ri(1,2) = ( — 2)(r%)2 cos 2 sin zx Using an approach similar to that of [11] it can be shown that
the target dynamics in LPC are given by
3((r 07\ sin 2z, (18)
- 5154 — 5253
i y1(tr) = BCE R (28)
whereo, = @d Then, using each pseudo-measurement, do +
a standard Kalman filter update step to produce a filtered (b) = 5153 + 5254 (29)
state estimatek};‘k, and its associated error covariance matrix, Y2k S2 + 5%
, for each subinterval. Finally, compute the weighted :
k|k — 23
average of the estimate from each subinterval, i.e. y3(tk) = ys(te—1) +arctan S, (30)
R Y Ya(tr) = ya(tr—1) + 3 In (S5 + S3) (31)
Fhlk = Z%X“k 19 where
Ne o . . S1=y1 + exp(—ya) [ws cos(ys) — wasin(ys)] (32)
— 7 [ ot R ) _ 3 /
Pk = ;7’“ {P’“““ + (e = Xele) (Kigre — Xnfre) } (20) Sz = y2 + exp(—ya) [w3 sin(ys) + wa cos(y3)] (33)
Sz = Ty1 + exp(—ya) [wy cos(ys) — wa sin(ys)] (34)

Note, it is not necessary to combine all the Gaussians into
a single Gaussian approximation at the end of each scands = 1+ Tya + exp(—ya4) (w1 sin(ysz) 4+ w2 cos(ys)] (35)
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and the values on the right-hand side of (32)—(35) are elemetse corresponding error covariance terms are
of yr_1 andwy_;. Given (28)—(31) it is straightforward, if 9 . 9 9

_ 2 -2 2
tedious, to compute the Jacobian matrix for the EKF prediction P(1,1) = 0, sin" 21 + 770 cos” 21 (41)
step. The interested reader is referred to [1] for details. P(2,2) = 07 cos® z1 + 70} sin” 2 (42)
P(1,2) = (02 — fQU?,) sin z1 cos 21 (43)

V. RANGE-PARAMETERISED LPC-EKF

This filter, hereafter called the RP-LPC-EKF, is based on tr'for the Gaussian sum measurement approxmatmn filter and

. a7 e RP-LPC-EKF the values of and o, are given by the
ra_nge-parametens_e_d EKF (.)f Peach [3]. Th_|s filter is Inltlallsemean and length of each range subinterval as described in
with an user-specified minimum aqd maximum range .to trgeection lll. For the LPC-EKF these values are user-specified
target, r,,;, and r,,... This range interval is then divided

into Ng subinterval using the method described in Section Il 'arameters.

Then, an EKF is initialised for each range subinterval usi To set the velocity components we require estimates of
' X . . 9 e initial heading and speed of the target. The initial course
the method described in Section VI.

For each individual subinterval, the target state is estimatgfj the tqrget is estimated as = z + 7. The minimum
. . ; ) and maximum speed of the target,;, and s,,.., are user-
using the extended Kalman filter algorithm. Assuming the _ .. ; Jrmas, )
A ) ; Specified parameters. The speed interval is divided using the
measurement noise is Gaussian, the marginal measurement . .
oo , ‘ .~ same method as for the range interval, with the lower speed
likelihood from each EKFp. = p(z|i), can be easily . : . ) :
computed. The weights are then updated using !ntervals asgocgtegi .v.wth the gloser range intervals as in [5],
' i.e. thei-th filter is initialised with mean values for the range
P, and speed ofr’, st).
72{% i (36) The uncertainty in the target's course is assumed to be
i=1 P uniform in the rangg—=~, Z], thus it has a standard deviation

For output only, the average state estimate in LPC and abo. = - With these assumptions, the velocity components

e =

associated error covariance is given by of the state vector are then initialised using
Ne X(3) = ssinc¢ — 2§ (44)
<> _ e 2
Yklk = ; VEY k|k @37) x(4) = scosc— gy (45)

Ne o . . y o, The velocity covariance terms are given by
Pur=> 7 {Pm + ke = Vi) T ke — Yrjre) } (38)
i=1

P(3,3) = o2sin’¢ + 5202 cos’ ¢ (46)
P(4,4) = 0% cos® ¢ + 5202 sin’ ¢ (47)

wherey; , andP;j , are the estimated state and its associated A
error covariance from théth filter, Note, in contrast to the P(3,4) = (07 — 570;)sinccose (48)
Gaussian sum measurement approximation filter, an individ

I o . lf—ac!r the Gaussian sum measurement approximation filter and
filter is maintained for each range subinterval.

the RP-LPC-EKF the values of and o, are given by the

mean and length of each speed subinterval as described in

Section lll. For the LPC-EKF these values are user-specified
Accurate initialisation is crucial to obtaining effective trackparameters.

ing performance for the single sensor bearings-only problem.Gjven the initial estimate and its associated error covariance

The method used in this paper is the one described in Sectigrcartesian coordinates, the LPC-based filters are initialised

6.4.1 of [5] A more Sophisticated method was first tl’ia”ery noting that we can write (27) as = f(X) Then, using a

making using of the unbiased conversion of [14] but thigrst-order approximation, the initial estimate in LPC is
proved to be less robust than the method described here. This is

probably due to the relatively low measurement noise used in Vi = f(xip) (49)
the scenario considered here. In such cases, the bias convergmp its associated error covariance is given by
factor, \g, is close to unity and the resulting error covariance

V1. INITIALISATION

matrix is ill-conditioned. P{¢ = FPy F' (50)
Each filter is initialised using the first bearing measuremen .
. ... wWhereF is

z and the known measurement noise standard deviation of

An initial range estimate and associated range measurement F= x| (51)

standard deviationr,. are then used to compute an initial X

estimate of the target position. That is, the position elements VII. SIMULATIONS

of x,); are given by The three tracking algorithms where compared using 1000
%(1) = Fsin 21 (39) Monte 'Ca'\rlo simulations of a simplg tracking scenar'io. This
A ~ scenario is based on the one used in Section 6.5.1 in [5] for
X(2) =7 cos 21 (40) 4 non-manoeuvring target. Both the observer and the target
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are submarines, with the observer initially at the origin of thguickly each tracker can refine its track estimates once it has
coordinate frame. The initial range and bearing to the target dudl information on the target.
5km and80° respectively. The observer’s trajectory has three

distinct segments — constant velocity motion for 13 minutes; TABLE Il
a coordinated turn through20° for 4 minutes; followed by TRACKER PERFORMANCEMETRICS
constant velocity motion for a further 13 minutes. The observer
moves with a constant speed of 5 knots while the target’s speed Algorithm Final RMS | RTAMS | Divergent
is 4 knots. The target follows constant velocity motion with a : km km Tracks

. o . . Gaussian Sum 0.32 1.43 0
heading of—140°. The bearing measurement noise standard LPC-EKF 0.24 0.29 0
deviation wasl® and the sampling interval was 1 minute. RP-LPC-EKF 0.26 0.22 1

The range and speed parameters used for initialisation
are shown in Table |. For the range-parameterised EKF andFrom the results in Table Il we see that all three filters pro-
the Gaussian sum measurement filter the range interval wade similar tracking accuracy by the final scan. The significant
divided into N = 5 subintervals. The covariance scalinglifferences between the filters are in the speed with which
factor, for the Gaussian sum measurement filter was settib@y are able to make use of the range information provided
C = 10. For the LPC-EKF filter, the range and speed standaothce the observer begins to manoeuvre. The Gaussian sum
deviations were set te, = 2 km ando; = 2 kts respectively. approximation filter suffers from a relatively slow convergence
Even though the true target dynamics were deterministigte, while the two LPC-based filters show similar behaviour.
a minor amount of process noise was added to the LPC-The similarity in performance between the LPC-EKF and its
based filters. This ensured that the gain in the filter remaineghge-parameterised equivalent is in contrast to the results of
sufficiently high. Peach [9]. This may be due, in part, to the particular geometry
of this scenario. In [9], the most significant differences be-
tween the MPC-EKF and the range-parameterised MPC-EKF
occurred when the relative range was small km) or large
(> 20 km). Another cause is suggested by the results of [1].
Minimum Maximum _Mean These results suggest that by using LPC in place of MPC, the
ggggz mn ;’Zg omas z?‘;’]zg o 13km degree of nonlinearity of the problem is reduced, increasing
the robustness of an EKF-based filter.
Figures 3-5 show the tracker output from each of the
ree filters from a single Monte Carlo run. These figures
early illustrate the relative differences between the filters in
- . respect of accurate performance at the final scan and accurate
1 ;Z?;’T;ﬁaqir:gf’are (RMS) position error at the fin erformance after the observer's manoeuvre.

2) rootgimg-averéged mean square (RTAMS) error; and U_sing the simplest algorithm, _LPC-EKF, as a bag.eline the
3) the number of divergent tracks. runtimes of the other two algorithms were approximately 5
Using the metrics of [5], a track was deemed to hdikerged tmes as long for the Gaussian sum measurement approxi-
if the estimated position error at any time was greater th&fgtion filter and 7 times as long for the range-parameterised
20km. The RMS and RTAMS metrics were only computeliP C-EKF algorithm.

for non-divergent tracks. The RMS metric at sdams given

TABLE |
RANGE AND SPEEDINITIALISATION PARAMETERS

performance of the tracking algorithms using the followin

Once again, following the approach in [5], we evaluated théf
three metrics !

by 2500
1 M 2000
RMS;, = MZ(‘%”Z’ —ah)2 + (§i +yp — yh)? 1500
=1 1000
(52) = 500
where M is the number of Monte Carlo simulations. The f— .
RTAMS metric is given by
—500y
RTAMS = (53) ~100g I(E):L:;:d Target
) M n 1504 —=— True Target |
i )2 ~i _at)2 '
M(kN . kt) Z Z (.’,Ui + LE’Z xk) + (y}" + yz yk) —200 [¥] 2000 4000 6000 8000 10000 12000 14000
i=1 k=ko+1 X(m)

whereky is the index of the final scan arig is the scan at

which the observer completed its turn. The target trajectorydg. 3. Tracker output from a single run of the Gaussian sum measurement
only completely observable once the observer has commenéggfoximation filter.

a manoeuvre, so the RTAMS metric is a measure of how
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Fig. 4. Tracker output from a single run of the LPC-EKF filter. [7]
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Fig. 5. Tracker output from a single run of the range-parameterised LPC-EKF
filter. [14]

VIIl. CONCLUSIONS [15]

The results of this paper suggest that the key issue in making
the single sensor bearings-only tracking problem difficult is
the lack of full observability of the target state. By selecting
a coordinate basis, such as MPC or LPC, the effect of
this issue is greatly ameliorated. It is then possible to use
a relatively unsophisticated nonlinear filter and still obtain
adequate performance.
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