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Markov chains

We consider the following state space : (Rn,L(Rn)).

Definition

A sequence of random variables (Xk)k∈N taking values in Rn is a
Markov chain if for all k ≥ 1, x0, . . . xk−1 ∈ Rn and A ∈ L(Rn) :

P(Xk ∈ A|Xk−1 = xk−1, . . . ,X0 = x0) = P(Xk ∈ A|Xk−1 = xk−1).

Hypothesis

In the sequel, the Markov chain is homogeneous and admits a
family of density functions (p(.|x))x∈Rn such that :

P(Xk ∈ A|Xk−1 = xk−1) =

∫
A
p(xk |xk−1)dxk .
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Example

The state space is here R2. For all x ∈ R2, let B(x , 1) be the unit
ball centered in x .

Definition

For all x ∈ R2, the distribution Unif (B(x , 1)) is defined by its
density :

1

π
1(. ∈ B(x , 1)).

For the initial condition, we take :

X0  Unif (B(0, 1)).

And for transition distributions :

Xk |(Xk−1 = xk−1) Unif (B(xk−1, 1)).
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Hidden Markov models

Definition

(Xk ,Yk)k∈0:m−1 is a hidden Markov model if : (Xk)k∈0:m−1 is a
Markov chain, (Yk)k∈0:m−1 are independent conditionally to
(Xk)k∈0:m−1 and for all k , Yk depends only on Xk .

Schematically, we have :

X0 −−−−→ X1 −−−−→ X2 −−−−→ . . . −−−−→ Xm−1y y y y y
Y0 Y1 Y2 . . . Ym−1

.
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We choose (Yk) taking values in ]− π, π]. Conditionally to
Xk = xk , we define :

Yk = Arg(xk) + ε

where ε N (0, σ2).

Related density : yk 7−→ p(yk |xk).
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Issues

Now, the hidden chain (xk) is unknown and we only have the
observations (yk).

Aim : reconstitute x0:m−1 := (x0, . . . , xm−1) conditionally to the
observations.

Specifically, to generate a sample according to the following
density :

p(x0:m−1|y0:m−1)dx0:m−1.
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Sequential Importance Sampling (SIS) algorithm

We try to simulate a sample from the density p(x0|y0)dx0.

p(x0|y0) =
p(x0, y0)

p(y0)
=

1

p(y0)
p(y0|x0)p(x0).

We can generate a sample from p(x0)dx0.

We can compute x0 7→ p(y0|x0).
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p(x0|y0)dx0 =
1

p(y0)
p(y0|x0)p(x0)dx0.

SIS algorithm (first step) :

Generate a sample of length N from p(x0)dx0 :

x
(1)
0 , . . . , x

(N)
0 .

Compute for each particle j :

w
(j)
0 =

1

p(y0)
p(y0|x (j)

0 ).

The sample (x̃
(j)
0 )j∈1:N which approximates p(x0|y0)dx0 is :

N∑
j=1

w
(j)
0∑N

j ′=1 w
(j ′)
0

1
x

(j)
0

(dx0).
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(1)
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(j)
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p(x0:i |y0:i )dx0:i =

1

p(y0:i )
p(y0|x0) . . . p(yi |xi )p(x0)p(x1|x0) . . . p(xi |xi−1)dx0:i .

SIS algorithm (step i). For all particle j ∈ 1 : N :

Conditionally to x
(j)
i−1, generate a sample according to

p(xi |xi−1)dxi :

x
(1)
i , . . . , x

(N)
i .

Compute for each particle j :

w
(j)
i = w

(j)
i−1 × p(yi |x

(j)
i ).

The sample (x̃
(j)
1:i )j∈1:N which approximates p(x1:i |yi )dx1:i is :

N∑
j=1

w
(j)
i∑N

j ′=1 w
(j ′)
i

1
x

(j)
1:i

(dx1:i ).
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Convergence and degeneracy problem (SIS)

Convergence :

for m the length of the chain fixed, central limit theorem
when the number of particles N → +∞.

Degeneracy problem :

many particles have a relative weight close to 0%,

for N fixed, from a certain number of sites, only one particle
has an important relative weight.

→ Resampling of the particles.
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p(x0|y0)dx0 =
1

p(y0)
p(y0|x0)p(x0)dx0.

SISR algorithm (first step)

Generate a sample of length N according to p(x0)dx0 :

x
(1)
0 , . . . , x

(N)
0 .

Compute for each particle j :

w
(j)
0 = p(y0|x (j)

0 ).

Generate (x̃
(j)
0 )j∈1:N from :

N∑
j=1

w
(j)
0∑N

j ′=1 w
(j ′)
0

1
x

(j)
0

(dx0)

and let (w̃
(j)
0 )j∈1:N ≡ 1.
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SISR algorithm (step i). For all particle j ∈ 1 : N :

Conditionally to x̃
(j)
i−1, generate a sample according to

p(xi |x̃i−1)dxi :

x
(1)
i , . . . , x

(N)
i .

Compute for each particle j :

w
(j)
i = w̃

(j)
i−1 × p(yi |x

(j)
i ) = p(yi |x

(j)
i ).

Generate (x̃
(j)
i )j∈1:N from :

N∑
j=1

w
(j)
i∑N

j ′=1 w
(j ′)
i

1
x

(j)
i

(dxi )

and let (w̃
(j)
i )j∈1:N ≡ 1.
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Convergence (SISR)

Elimination of the weights degeneracy problem.

Convergence :

for m the length of the chain fixed, central limit theorem
when the number of particles N → +∞.

23/31 Alexis Huet



Definitions and issues
Particle filtering algorithms

Real applications

Sequential Importance Sampling algorithm
Sequential Importance Sampling Resampling algorithm
Comparison of algorithms

Example

Comparison with m = 100 sites and N = 10000 particles.
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Path tracking

Observations : noisy position.

Hidden states : real position.

Parameters : behavior of the moving body.
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Voice recognition system

Observations : a word is pronounced, cut every 15ms.

Hidden states : phonemes that led to this pronounced word.

Parameters : the set of all dictionary words.
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Phylogenetic analysis

Observations : DNA sequences of several species at the leafs
of a tree graph.

Hidden states : all DNA sequences from the common ancestry
sequence to the present time.

Parameters : mutation parameters, lengths of the tree
branches.
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Phylogenetic analysis

t = −1 ACGAGGTGA

ACAAGGTGA

ACAGGGTGA

ACAGGGCGA

ACAGGGCAA

t = 0 ACAGGGCAA
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Phylogenetic analysis

i 1 2 3 4 5 6 7 8 9
t = −1 A C G A G G T G A

A C A A G G T G A

A C A G G G T G A

A C A G G G C G A

A C A G G G C A A

t = 0 A C A G G G C A A
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Phylogenetic analysis

i 1 2 3 4 5 6 7 8 9
t = −1 ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?

t = 0 A C A G G G C A A
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