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Goal

We define a new pair of precision/recall metrics for evaluating time series anomaly detection tasks: the affiliation metrics.
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Motivations
1. Sample-based precision/recall cannot 2. Recent range-based metrics |1, 2| are
handle time series well easilly gamed by adversary predictions.
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Figure 3: Construction of the adversary predictions

Concept 1: Proximity Concept 2: Locality Concept 3: Probability

X = Fprecisionj (dist(x, gtj)) y = Fy,recallj (dist(y, prednlj))
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(a) Average distance between sets: (b) Local affiliation to the closest (¢c) Comparison against random
example of the directed distance ground truth event: example resulting sampling: example for converting
computed from predicted events to in zones delimited by the dashed lines. each predicted sample to a precision
ground truth (left) and from ground The zones are similar for both score (left) and each ground truth

truth to predicted events (right). directions: precision (left), and recall sample to a recall score (right).
(right).

Summary

Locally interpretable and visualizable (Sec. 4.3)... - Parameter-free,

Expected precision and recall given a single random pre-

Algorithm  Mean of 35 events — — ction. The expected precision and recall are given by: % Reta.ﬂ A thSiC&l meaﬂiﬂg aAS hﬂked tO A time,
iForest 0.52/0.84/0.64 0.37/0.53/0.44  1.00/0.91/0.95 . - LOC&:_ly interpretable and visualizable (SGC. 43),

seq2seq 0.86/0.79/0.83 0.96/1.00/0.98  0.86/1.00/0.93 Pprecision = 5+ = Precall = 7 (8)

2 2 2 - . . .
1 : 2 : This property confirms that scores around 1/2 corresponds to % RO OUSt aganSt advers ary predlCt 10115 (SGC . 4 . 2) :

| : random detector (cf. Appendix C.2 for proof). In this case, the .
- Ex

! ! 1ssical precision/recall would give a precision of p and a recall St erice O? St atiStica bounds Of the SCOore (Sec . 4 . 4) ,
2000 4000 bse to 0 assuming a large number of samples. . .
- Aware of temporal adjacency (A) and of event duration (B).

... Theoretical bounds on the score (Sec. 4.4)
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