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Abstract. Given a time series, the change point detection task con-
sists in finding the instants where the statistical distribution of the series
abruptly changes. The classic approach based on optimization techniques
are too rigid and entangled, for which recent approaches advocate build-
ing a complete solution path, ranking all the possible change points of
the series. This article extends this paradigm by providing a chain of
subsets, corresponding to a hierarchy of changes, where different levels
imply a finer detection granularity. Our proposal is to compute all levels
from a single score vector through a recursive thresholding mechanism,
where the threshold maps to the desired detection granularity.
We contrast our proposal against state-of-the-art approaches on pub-
lic benchmarks with human expert labeling, showing: (i) best-in class
performance (overall F1-score of 0.87), (ii) a statistically significant and
remarkable improvement over the state of the art in the practical case
where a single cost function and threshold setting is selected over multiple
levels (F1-score of 0.76) and (iii) a qualitative alignment with different
human experts for different levels, suggesting that each experts may find
a different suitable level in practice.

Keywords: Change Point Detection · Multi-level Methods · Recursive
Algorithms.

1 Introduction

Change point detection (CPD) focuses in detecting the changes in the distribu-
tion of a time series (such as those in mean, variance, or higher-order statistics),
whose need arises in many domains including traffic analysis, finance, speech-
analysis, and bio-informatics.

Formally, CPD consists in partitioning the indexes of a time series into in-
tervals I1, . . . , IK+1 (with K typically unknown) such that each interval of the
partition conserves a property of interest (e.g., the homogeneity of a statisti-
cal moment), whereas consecutive intervals break it. This property of interest is
usually measured by a cost function C (e.g., quadratic error loss for the first mo-
ment) mapping a sub-sequence xI (the restriction of a time series x to an interval
I) to a numeric value. Typical CPD formulations [29] take the form of a global
optimization problem, trading-off the total cost

∑K
k=0 C(xIk+1

) decreasing with
further partitioning of the series vs a penalty term increasing with the number
K of detected changes. However, as shown in the left of Fig. 1, the penalty term
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Fig. 1. Comparison of detection methods on the scanline_42049 dataset [8], where
K denotes the number of detected changes. (Left) Penalty methods treat all changes
equally and are difficult to tune. (Middle) Solution path approaches capture relative
change importance but lack conciseness. (Right) Our proposed chain of subsets method
captures the relative importance between groups of changes, enhancing interpretability.

is hard to set, and small changes yield very different change points (i.e., a seg-
mentation Sβ′ for a lower penalty β′ < β is not guaranteed to verify Sβ′ ⊃ Sβ),
which undermines the practical usability of the methods. To counter that, so-
lution path approaches have been introduced that maintain coherence among
change points: at the same time, as the middle of Fig. 1 shows, the resulting set
is still cluttered and of difficult interpretability for the human expert. In this
paper, we introduce a new methodology to produce a chain of subsets, corre-
sponding to multiple levels of changes, that is not only guaranteed to contain an
increasing sequence of subsets but that also significantly eases interpretability
as shown in the right of Fig. 1. Summarizing our main contributions:

– We introduce scoring and recursive thresholding mechanisms producing sub-
set chains parametrized by (i) a cost function and (ii) a threshold. We show
these provide decomposable (w.r.t. the levels) and flexible (w.r.t. the thresh-
olds) results that align with human experts (each matching a different level).

– Our experimental campaign (over 1000 combinations from 18 algorithms in
3 families, across 42 datasets) shows our proposal outperforms the state of
the art, even with a single cost function and threshold setting performed
over the whole public benchmark.

– We open source an R package scoth (standing for scores and thresholds)
in [21].

2 Related work

While research in change point detection in the last ten years has been driven
and influenced by the statistics and signal processing communities, recent lit-
erature started to appear that approaches the field with a spirit closer to the
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Table 1. Compact taxonomy of the approaches experimentally compared in this work
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[30] BS 2 (60)  
[4] SEGNEIGH 2 (57)  [13] WBS 2 (12)  
[16] Lasso 3 (90)  [15] WBS 2 2 (12)  
[7] ADWIN 2 (18) # [14] TGUH 1 (4)  
[23] PELT 2 (60)  [2] IDetect 1 (4)  
[18] CPNP 2 (80) # [6] NOT 2 (12) #
[12] RFPOP 2 (60)  [26] ChangeForest 2 (9) #

M
is

c
50

4 [1] BOCPD 4 (480)  [8] Naive n.a. #

[27] ECP 3 (9) # Chain of subset 2 (48)  [17] KCPA 1 (15) # (this paper)
† Number of overall experimental settings for each family F.
‡ Number of parameters and of experimental settings for each approach.
Cost function can be  parametric or # non-parametric.

machine learning community. We briefly describe the existing families of ap-
proaches, namely penalty-based and solution path-based, as well as additional
approaches (Bayesian, kernel-based and energy-based), which we directly exper-
imentally compare with and that are summarized in Table 1.

Penalty-based approaches. The classical [28] approach for change point de-
tection, still popular nowadays [29], sets the problem as a global optimization
task, involving the total cost of a series regularized by a penalty function. In
this family of approaches, the penalty term should be assigned before apply-
ing a search method: automatic selection occurs using criteria (AIC, BIC), or a
fixed number of change points K can be defined beforehand (SEGNEIGH [4]).
Once the cost function and penalty terms have been assigned, a search method
is used for solving the optimization problem: the simplest search method is to
select at most one change (AMOC [20]), but exact solutions can also be found
efficiently (PELT [23]). Since the underlying model of real time series is usually
unknown, approaches have been developed to improve the robustness of the de-
tection: strategies are modifying the cost function (RFPOP [12], to cope with
the presence of outliers, and Lasso [16]). Another possibility is to consider non-
parametric approaches by relying on the empirical distribution function (AD-
WIN [7], CPNP [18]). As observed earlier, the main drawback of this family is
that even slight changes of the penalty term yield completely different solutions.

Solution path approaches. Those methods decouple (i) the ranking of the
potential change points from (ii) the selection of a subset of the top ranked el-
ements. Compared to the penalty-based class, it allows the user to postpone the
selection of the number of change points to a later stage and to quantify the rel-
ative importance between the changes. This class of approaches originates with
Binary Segmentation (BS) [30], a divisive “greedy” method consisting in itera-
tively finding the next change point by maximizing a discrepancy function. As
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this approach does not behave well with multiple changes, recent approaches fo-
cus on local intervals containing at most one change point (IDetect [2], NOT [6]),
possibly relying on random subsets of intervals (WBS [13] , WBS2 [15]). A com-
plementary agglomerative strategy consists in adopting a “generous” bottom-up
approach as in TGUH [14]. Non-parametric counterparts also exist, with NOT [6]
and ChangeForest [26]. Even if the selection step can be achieved in a similar
fashion to the penalty-based approaches (with a criterion, e.g., sSIC [13], or on
a grid), the strength of the methodology lies in possible refinements of the selec-
tion: Local Pruning (LP) [9] selects only a subset of the changes detected by the
sSIC criteria based on additional local computations, while SDLL [15] employs
an heuristic similar to the elbow method in clustering. The main drawback of
these methods is to still output a unique prediction set, with no explicit hierar-
chy: as the methods result in possibly too numerous detected changes, practical
usability is therefore undermined.

Miscellaneous approaches. Other families leverage probabilistic, kernel- or
energy-based methods, which we also include in our comparison. Bayesian meth-
ods [1,11] compute the probability distribution of the time elapsed since the last
change point and, due their probabilistic nature, provide additional confidence
intervals regarding the position of the detected changes. The initial BOCPD [1]
model was extended with model selection (BOCPDMS [24]) and robustness to
outliers (RBOCPDMS [25]). Additional methods can be based on the divergence
energy statistics (ECP [27]) or on the maximum kernel Fisher discriminant ratio
(KCPA [17]). As reported in Table 1, we include representative examples of such
methods, as well as naive method (i.e., zero detected change points) also used
as benchmark in [8], in our experimental comparison.

3 Chains of subsets methodology

We formalize here our proposed method to yield a hierarchical chain of subsets
(Sec. 3.1) by adopting a scoring step (Sec. 3.2) followed by a recursive thresh-
olding step (Sec. 3.3), that we also illustrate with an example (Sec. 3.4).

3.1 Problem formulation

Notation. We adapt the standard notation of existing literature [29] and extend
it to our context wherever necessary. We consider a series x = (x1, . . . , xT ) of
length T , that can be univariate or multivariate. A segmentation S = (b1, . . . , bK)
of the series is a sequence of integers verifying 1 < b1 < b2 < ... < bK < T + 1.
This segmentation contains K ∈ J0, T − 1K change points and, by defining the
dummy indexes b0 := 1 and bK+1 := T + 1, it is associated to the partition
[1, T + 1) =

⋃K
k=0[bk, bk+1) consisting of K + 1 intervals I1, . . . , IK+1. Following

the notations in [13], any such interval [bk, bk+1) may also be denoted as [s, e)
with start- and end-points s and e.
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A cost function C(·) quantifies as a numeric value a property of interest (e.g.,
mean) of a consecutive sub-sequence xs, . . . , xe−1, and is noted C(x[s,e)). For in-
stance, the mean can be measured by the quadratic error loss, which corresponds
to CL2(x[s,e)) :=

∑e−1
i=s ∥xi − x̄∥22, with x̄ the (univariate or multivariate) mean

of the sub-sequence. The total cost V (·) serves as an internal measure of the
performance of a segmentation S, and is defined, for a series x and a cost C, by:

V (S;x,C) :=
∑K

k=0 C(x[bk,bk+1)). (1)

The total cost is written V (S) when the series and the cost function are fixed.
In particular, V (∅) is the initial cost C(x[1,T+1)).

Global vs local optimization and discrepancy. Change point detection on
series x aims to identify a segmentation S where each interval maintains the
property of interest (measured by cost C), while consecutive intervals break it.
For a specified number of change points K, this becomes an optimization prob-
lem: finding a K-length segmentation that minimizes total cost V . However, K
is generally unknown and V serves only as a guide: rather than the global opti-
mization using a penalty term (as seen in Sec. 2), we adopt a local optimization
approach based on discrepancy. The discrepancy function D(·) is a convenient
way to locally assess the property of interest through the cost C(·). It is defined
for any cut b ∈ Js+ 1, e− 1K of a subset [s, e) by:

D(b;x[s,e), C) := C(x[s,e))−
(
C(x[s,b)) + C(x[b,e))

)
. (2)

Discrepancy is a good measure for the intervals [s, e) that are sufficiently
local to contain at most one change point, but may fail for intervals that contain
more changes (cf illustration in Fig. 2(a) in Sec. 3.4). When adding a cut b to
a segmentation S = (b1, . . . , bK), the discrepancy then naturally appears when
computing V (S) − V (S ∪ b) thanks to the additive form of the total cost V (·).
We define in that context the gain G(·), for any bk ∈ S, and note that since the
total cost V has an additive form, when computing V (S \ bk) − V (S) (where
S \ bk represents the set S with element bk removed), all the terms that do not
involve bk cancel out:

G(bk, S) := V (S \ bk)− V (S). (3)
G(bk, S) = D(bk;x[bk−1,bk+1), C). (4)

Solution path vs chain of subsets. A complete solution path [15] P is a
nested sequence of segmentations ∅ =: S0 ⊊ S1 ⊊ . . . ⊊ ST−1 := J2, T K that
verifies: |Sk| = k for k ∈ J0, T−1K. In particular, Sk+1 only differs from Sk by one
element. We further introduce the notion of chain of subsets, defined as a nested
sequence of segmentations: ∅ =: L0 ⊂ L1 ⊂ L2 ⊂ . . . Compared to a solution
path, the condition on the cardinal is discarded, so that each step Llevel ⊂ J2, T K
can differ by one or more elements from the previous level Llevel−1. A chain of
subsets can be a solution to the CPD problem that is both recursive, as the
next levels contain the former, and hierarchical, as changes of less important
magnitude can be stratified in increasing levels.
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Algorithm 1 Scoring through maximum normalized gains vector
1: Inputs x = (x1, . . . xT ) series; C cost function.
2: S ← J2, T K ▷ initial segmentation, as a fully segmented set
3: score← (0)J2,T K ▷ initial scores, vector of zeros of length T − 1
4: while S ̸= ∅ :
5: for b ∈ S :
6: score(b)← max(score(b), G(b, S)) ▷ update scores
7: S ← S \ argminb∈S score(b) ▷ remove the worst cut
8: Outputs score/V (∅) ▷ returns normalized scores ∈ [0, 1].

3.2 Scores

Scoring algorithm. Given a cost function C and a series x, a scoring function
b 7→ score(b) maps from J2, T K to [0, 1]. Intuitively, indexes b that are clear change
points for the current cost function (i.e. with large local gain) should have large
scores, and vice versa. We propose to build the segmentation path along with the
scoring of the indexes. The iterative procedure introduced in Algorithm 1 follows
a bottom-up approach [22], with the additional storage (at line 6) and usage (at
line 7) of the maximum normalized gain observed along the constructed path.
The use of the maximum in line 6 has a theoretical foundation that ensures two
properties linking the output scores and the corresponding solution path, whose
proof is omitted due to space constraints, but that is exemplified in Sec. 3.4:
(i) the scores are always decreasing w.r.t. the solution path, and (ii) given an
existing path produced by the scores, it is possible to reconstruct the exact same
scores by simply following the path. In a nutshell, the algorithm calculates for
all possible points their score (the normalized gain associated with segmenting
the series in that point), updates it if it is higher than their previously assigned
one (line 6) and removes from the pool the point with the smallest score (line
7). The process is repeated until all points are removed from the pool (line 4).

Complexity analysis. The subtle part in the algorithm implementation is
the update of the score function at line 6, since the naive implementation of
computing the gain for all b at each step of the iteration would lead to a quadratic
complexity (w.r.t. the number of calls of the cost function). Instead, we first
initialize two vectors A and B for tracking (a) the cost of each interval and (b)
the cost of each consecutive pair of intervals induced by the segmentation S.
At each iteration, the removed cut induces a modification of A that has been
already computed by B, and a modification of B that necessitates at most two
calls of the cost function. Overall, the process is linear both w.r.t. the number
of calls of the cost function and w.r.t. memory.

3.3 Thresholds

Basic thresholding. The scores vector computed in Sec. 3.2 and normalized
to [0, 1] offers a convenient setting for thresholding: the most basic mechanism
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Algorithm 2 Recursive thresholdings
1: Inputs threshold∈ [0, 1]; score vector; x series; C cost
2: L← [] ▷ placeholder for the changes at each level
3: L[0]← ∅ ▷ level 0
4: level← 1
5: L[level]← {b ; score(b) ≥ threshold} ▷ level 1 changes
6: while L[level] ̸= L[level− 1] :
7: S ← L[level] ▷ all the changes marked up to now
8: L[level + 1]←L[level] ∪ {b ̸∈ S; score(b)V (∅)

V (S)
≥ threshold}

9: level← level + 1

10: Outputs L ▷ list of changes at each level.

consists of setting a single value within [0, 1] as threshold and to detect as change
points all the indexes that are greater than this value. This threshold has a direct
interpretation in terms of gain: a change point is selected whenever there exists
a step (in the solution path) that offers a normalized gain (i.e. the difference
of total costs with and without this index, normalized by the initial cost) that
is greater than this threshold. Note that the threshold can be tuned without
additional computational cost, as the scores are computed once: this is in contrast
to penalty-based strategies that requires re-running the optimization problem at
any threshold change.

Recursive thresholding algorithm. Basic thresholding only returns a single
level of change points: we introduce in Algorithm 2 a recursive mechanism that
allows the production of chain of subsets L0 ⊂ L1 ⊂ L2 ⊂ . . ., where each
level corresponding to a finer granularity of the segmentation. Notice that this
formulation does not add any further hyperparameter since, having fixed the
cost function C(·), the inputs to the algorithm are the series x, the scores vector
produced by Algorithm 1, and a single threshold value in [0, 1], that can be
interpreted as the minimum normalized gain for a change point to be detected.

The initial steps populate level 0 with the absence of changes and level 1
with the basic thresholding result. The next levels are computed recursively by
considering the segmentation at the current level, noted S, and by measuring
the total cost V (S) relative to the initial cost V (∅). Note that the multiplicative
coefficient V (∅)/V (S) is larger than one, and acts as a constant “zooming” factor
over all the intervals corresponding to the segmentation S, which facilitates new,
smaller scores surpassing the threshold. The additional detected changes are
added to the next level and the recursion is applied until the convergence of the
segmentation (i.e. no new change point is detected in line 8).

3.4 Illustration of scoring and thresholding steps

Scoring. Fig. 2(a) contrasts the time series (top), the normalized discrepancies
D(b;x,CL2)/V (∅) (middle) with maximum value highlighted, and scores ob-
tained using Algorithm 1 (bottom), on a synthetic (normally distributed series
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Fig. 2. Illustration of scores vs discrepancies (a) and recursive thresholding (b). In (a),
the normalized discrepancy function is computed on two series, with red points and lines
indicating the maximum discrepancy index, and contrasted with our score proposal. In
(b), the horizontal dashed lines in the score series are the selected threshold of 0.1. The
vertical dashed lines are the segmentation indexes at each level, with bold dashes for
lower levels and lighter dashes for higher levels. K is the number of detected changes.

with four changes, top left) and a real series (scanline_42049, top right). These
cases are interesting because they contain multiple changes of the same magni-
tude: direct maximization of the discrepancy may lead to inappropriate change
point (middle left) or underestimated scores (middle right). Conversely, scor-
ings obtained with Algorithm 1 are still grouped into peaks of same magnitude
(bottom).

Recursive thresholding. Fig. 2(b) illustrates the recursion, with a threshold
of 0.1 and the CL2 cost, for the classic well-log data [31], depicting the two first
levels (top and middle), and convergence after five levels (bottom). The left plots
depict the single scoring vector containing all the information about the poten-
tial change points, which are recursively augmented at each step (the predicted
number of change points K is indicated at each level). After the computation
of the scores vector using CL2 (top-left), the indexes over the threshold of 0.1
are extracted, giving a segmentation S1 (top-right) from which the coefficient
factor V (∅)/V (S1) = 1.99 is computed. This coefficient updates the scores vec-
tor using score1 = 1.99 × score (middle-left), resulting in a new segmentation
(middle-right). The process converges after five steps (bottom-right), since no
element of score5 = 9.98× score exceeds the selected threshold (bottom-left).

4 Evaluation

4.1 Experimental settings

Algorithms and search grid. We evaluate our methodology against classical
and recent algorithms coming from penalty, solution path, and other change
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point detection approaches, as summarized in Table 1. Our methodology uses as
cost functions quadratic [28] and linear [5] losses. The linear loss cost function
fits a piecewise linear regression to each signal segment, with the cost defined
as the sum of squared residuals. We explore thresholds from 0.03 to 1 across 24
settings.

Datasets and annotations. We evaluate the algorithms on the publicly avail-
able benchmark [8] of 42 datasets, comprising univariate and multivariate series
from diverse sources (environmental, financial, etc.). The main factor considered
for the inclusion of a dataset in our selection is the presence of a change point,
understood as in the present article as an abrupt change in the statistical dis-
tribution of the series. Nonetheless, the datasets are real series and, thus, often
show additional seasonal patterns and outliers. Each series have been labeled by
5 different human annotators randomly selected from a pool of 8. These annota-
tors have been trained on multiple quality control series beforehand for learning
the difference between a change point and an outlier. Additional details about
each dataset and the annotation collection process are available in [8].

Performance metrics. The main performance indicator used for evaluating
the performance is the F1-score computed with a margin of error of M = 5 [29].
This metric is computed for each dataset on the median annotator, defined as
the user reaching the maximum average Jaccard index against all other users
(formally, with S1, . . . S5 the annotations given by the 5 annotators, we select
the user argmaxi

∑
j ̸=i

|Si∩Sj |
|Si∪Sj | ). To facilitate the comparison with prior art, we

also compute the alternative F1-score [8] biased by adding a trivial change point
that is always detected and named F1biased here, and the average covering metric
cover computed from the Jaccard indexes [3, 8].

Evaluation settings. We group the different algorithms into families that cor-
respond to the different approaches for the CPD task, as summarized in the first
column of Table 1. We evaluate the algorithms quantitatively in two different
settings: (i) the oracle setting, in which we report the performance obtained by
the best possible method and parameter values per dataset within each family,
and (ii) the best-single setting, corresponding to the performance of the best
method and parameter values across all datasets within each family, measured
in terms of average performance. To check the statistical significance of the re-
sults, we perform for each setting a Friedman test (p < 0.05 for both settings)
followed by Nemenyi post-hoc tests on the ranks extracted from the performance
values [10, 19]. Finally, we evaluate (iii) the qualitative alignment between the
results of our methodology with the annotations made by the human annotators
for three datasets of the benchmark.
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Table 2. Full ablation study of (a) oracle settings and (b) best single settings across
the four families of approaches on 42 public datasets (boldface for best and italic for
second-best approach). Results are displayed as average ± standard deviation.

Family(#)† Oracle setting Best-single setting

F1 F1biased cover F1 selected parameters

Ours (48) 0.87±0.20 0.92±0.09 0.82±0.11 0.76±0.27 linear cost; threshold=0.1
Misc (504) 0.84±0.23 0.91±0.11 0.75±0.15 0.49±0.38 OCP; λ=100; a=10; b=k=1
Penalty (425) 0.81±0.23 0.90±0.12 0.72±0.18 0.40±0.38 RFPOP; Huber cost; penalty=10
Solution Path (113) 0.77±0.26 0.87±0.12 0.73±0.18 0.43±0.35 NOT with M=10; quadratic cost; IC
Zero 0.17±0.38 0.65±0.20 0.56±0.21 0.17±0.38 none
† Number of overall experimental settings for each family.
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Fig. 3. Average rank comparison on F1 score between oracle (left) and best-single
(right) setting of each family, with critical distance (CD) with 95% confidence interval.
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Fig. 4. Qualitative results in applying our recursive methodology using the best-single
setting parameters on three datasets from [8] (top) and change points as labeled by five
different users (bottom). The dashed line in the score series is the selected threshold.
The vertical dashed lines are the segmentation indexes at each level, with bold dashes
for lower levels and lighter dashes for higher levels. The shaded bounding boxes repre-
sent the mass between the 5th and 95th percentile between consecutive change points
within the same level. The numbers in front of the rows in bottom parts are the user id
and the number of labeled changes. Details about annotation collection process in [8].
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4.2 Experimental results

Oracle setting results. The left parts of Table 2 and Fig. 3 display the or-
acle setting results. Our proposal has the highest average performance across
the three evaluation metrics, with relatively large standard deviations over the
different datasets. In terms of significance, our proposal attains the best average
rank of all method families (with an average rank close to 2), while being within
the critical distance compared to the state of the art. We also observe that the
three different evaluation metrics are correlated, with a bias for F1biased and
cover towards 1 due to the added trivial change point.

Best-single setting results. The right parts of Table 2 and of Fig. 3 report
results for the best-single setting, for which we explicit the parameters for the se-
lected method. Compared to the oracle setting, we observe an expected decrease
in the F1-score, either large (from −0.34 to −0.41 for the 3 state-of-the-art fam-
ilies of approaches) or limited (−0.11 for our methodology). The performance
gap between our proposal and other methods has widened, with rank analysis
confirming its superiority over the state of the art at 5% confidence level. This
larger difference suggests increased robustness to hyper-parameter choice. Com-
putationally, all methods except ECP run in less than one second on an Intel i7
1.90 GHz processor.

Qualitative alignment with different users for different levels. We depict
in Fig. 4 the scores and the change points outputs obtained at each level on three
time series, using our method with the best-single setting parameters (top), and
completed by the annotation for the change points as labeled by five different
users, ranked by the number of labeled changes (bottom).

Positive cases. Human annotators show disagreement in segmentation granular-
ity, which our methodology effectively captures. In the scanline_42049 series,
user 8’s two changes match our algorithm’s level 1 solution, while these changes
are subset of seven labels by users 7, 9, and 13 – corresponding to our level 2
solution. These seven labels are themselves subset of user 6’s ten labels (except
for the last label after 450), aligning with our level 3 solution (e.g., multiple close
changes around t = 350). Similarly, in unemployement_nl, users 6 and 13 mark
transition periods as separate changes (e.g., rise and fall near t = 140), unlike
user 10.

Negative case. Despite outperforming the state of the art, our algorithm has
limitations, as illustrated by the construction series with its seasonal patterns
and long-term piecewise trends. Here, where human labeler agreement is low, our
methodology identifies cyclic patterns as change points from level 1, contrary to
some users’ annotations. Note that our method appropriately does not segment
the series into seasonal yearly components unrelated to change points.
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5 Discussion

This paper presents a recursive score- and threshold-based methodology for
change point detection, with strengths and limitations discussed below.

Strengths. Unlike existing approaches, our proposal constructs a unique solution
path where recursive levels correspond to different change detection granulari-
ties. Experiments demonstrate both quantitative and qualitative improvements
over the state of the art. The recursive levels of granularity elegantly accommo-
date varying human preferences through consistent, incremental refinement with
minimal cognitive effort. The method requires only a few intuitive parameters
(threshold and cost function), enhancing its practical appeal.

Limitations. Several directions exist to improve algorithms in the new ‘chain of
subsets’ family. The first limitation concerns outliers appearing as paired change
points, addressable via refined cost functions as in RFPOP [12]. The second
limitation is the offline nature of our method, though our scoring’s independence
enables future adaptation to online settings. Future work also includes refining
threshold tuning guidance. While we currently recommend 0.1 as an effective
default in the best-single setting, the thresholding that induces multi-level change
points can be tuned independently from scoring computations, offering a valuable
opportunity for targeted investigation of threshold mechanisms.
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